Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.002
1.
Sci Rep ; 14(1): 10008, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693282

Historically, investigators have not differentiated between patients with and without hemorrhagic transformation (HT) in large core ischemic stroke at risk for life-threatening mass effect (LTME) from cerebral edema. Our objective was to determine whether LTME occurs faster in those with HT compared to those without. We conducted a two-center retrospective study of patients with ≥ 1/2 MCA territory infarct between 2006 and 2021. We tested the association of time-to-LTME and HT subtype (parenchymal, petechial) using Cox regression, controlling for age, mean arterial pressure, glucose, tissue plasminogen activator, mechanical thrombectomy, National Institute of Health Stroke Scale, antiplatelets, anticoagulation, temperature, and stroke side. Secondary and exploratory outcomes included mass effect-related death, all-cause death, disposition, and decompressive hemicraniectomy. Of 840 patients, 358 (42.6%) had no HT, 403 (48.0%) patients had petechial HT, and 79 (9.4%) patients had parenchymal HT. LTME occurred in 317 (37.7%) and 100 (11.9%) had mass effect-related deaths. Parenchymal (HR 8.24, 95% CI 5.46-12.42, p < 0.01) and petechial HT (HR 2.47, 95% CI 1.92-3.17, p < 0.01) were significantly associated with time-to-LTME and mass effect-related death. Understanding different risk factors and sequelae of mass effect with and without HT is critical for informed clinical decisions.


Hospitalization , Infarction, Middle Cerebral Artery , Humans , Female , Male , Aged , Retrospective Studies , Middle Aged , Infarction, Middle Cerebral Artery/complications , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/mortality , Cerebral Hemorrhage/complications , Brain Edema/etiology , Risk Factors , Ischemic Stroke/mortality
2.
Neurosciences (Riyadh) ; 29(2): 90-95, 2024 May.
Article En | MEDLINE | ID: mdl-38740406

OBJECTIVES: To investigate the factors that contribute to the development of cerebral edema after aneurysm clipping in individuals with aneurysmal subarachnoid hemorrhage (aSAH). METHODS: A total of 232 patients with aSAH caused by rupture and treated with aneurysm clipping were included in the retrospective analysis of clinical data. Postoperatively, the participants were categorized into two groups based on the presence or absence of cerebral edema: a complication group (n=33) and a non-complication group (n=199).A comparison was made between the overall data of the 2 groups. RESULTS: In the complication group, there were higher proportions of patients experiencing recurrent bleeding, aneurysm in the posterior circulation, Fisher grade III-IV, World Federation of Neurosurgical Societies (WFNS) grade II, Hunt-Hess grade III-IV, concomitant hypertension, duration from onset to operation ≥12 h, and concomitant hematoma compared to the non-complication group (p<0.05). Cerebral edema after aneurysm clipping was associated with several risk factors including repeated bleeding, aneurysm in the back of the brain, Fisher grade III-IV, WFNS grade II, Hunt-Hess grade III-IV, simultaneous high blood pressure and hematoma, and a duration of at least 12 hours from the start of symptoms to the surgical procedure (p<0.05). CONCLUSION: In patients with aSAH, the risk of cerebral edema after aneurysm clipping is increased by recurrent bleeding, aneurysm in the posterior circulation, Fisher grade III-IV, WFNS grade II, Hunt-Hess grade III-IV, concomitant hypertension and hematoma, and duration of ≥12 h from onset to operation.


Brain Edema , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/surgery , Subarachnoid Hemorrhage/complications , Male , Female , Middle Aged , Brain Edema/etiology , Risk Factors , Retrospective Studies , Adult , Aged , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Intracranial Aneurysm/surgery , Intracranial Aneurysm/complications , Neurosurgical Procedures/adverse effects , Surgical Instruments/adverse effects , Aneurysm, Ruptured/surgery , Aneurysm, Ruptured/complications
3.
Aging (Albany NY) ; 16(8): 6990-7008, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38613810

BACKGROUND: Intracerebral hemorrhage (ICH) comprises primary and secondary injuries, the latter of which induces increased inflammation and apoptosis and is more severe. Activating transcription factor 6 (ATF6) is a type-II transmembrane protein in the endoplasmic reticulum (ER). ATF6 target genes could improve ER homeostasis, which contributes to cryoprotection. Hence, we predict that ATF6 will have a protective effect on brain tissue after ICH. METHOD: The ICH rat model was generated through autologous blood injection into the right basal ganglia, the expression of ATF6 after ICH was determined by WB and IF. The expression of ATF6 was effectively controlled by means of intervention, and a series of measures was used to detect cell death, neuroinflammation, brain edema, blood-brain barrier and other indicators after ICH. Finally, the effects on long-term neural function of rats were measured by behavioral means. RESULT: ATF6 was significantly increased in the ICH-induced brain tissues. Further, ATF6 was found to modulate the expression of cystathionine γ-lyase (CTH) after ICH. Upregulation of ATF6 attenuated neuronal apoptosis and inflammation in ICH rats, along with mitigation of ICH-induced brain edema, blood-brain barrier deterioration, and cognitive behavior defects. Conversely, ATF6 genetic knockdown induced effects counter to those aforementioned. CONCLUSIONS: This study thereby emphasizes the crucial role of ATF6 in secondary brain injury in response to ICH, indicating that ATF6 upregulation may potentially ameliorate ICH-induced secondary brain injury. Consequently, ATF6 could serve as a promising therapeutic target to alleviate clinical ICH-induced secondary brain injuries.


Activating Transcription Factor 6 , Blood-Brain Barrier , Cerebral Hemorrhage , Cystathionine gamma-Lyase , Disease Models, Animal , Rats, Sprague-Dawley , Animals , Cerebral Hemorrhage/metabolism , Rats , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Male , Cystathionine gamma-Lyase/metabolism , Cystathionine gamma-Lyase/genetics , Blood-Brain Barrier/metabolism , Apoptosis , Brain Edema/metabolism , Brain Injuries/metabolism , Brain/metabolism , Brain/pathology
4.
Brain Res ; 1834: 148907, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570153

BACKGROUND: Traumatic brain injury (TBI), as a major public health problem, is characterized by high incidence rate, disability rate, and mortality rate. Neuroinflammation plays a crucial role in the pathogenesis of TBI. Triggering receptor expressed on myeloid cells-1 (TREM-1) is recognized as an amplifier of the inflammation in diseases of the central nervous system (CNS). However, the function of TREM-1 remains unclear post-TBI. This study aimed to investigate the function of TREM-1 in neuroinflammation induced by TBI. METHODS: Brain water content (BWC), modified neurological severity score (mNSS), and Morris Water Maze (MWM) were measured to evaluate the effect of TREM-1 inhibition on nervous system function and outcome after TBI. TREM-1 expression in vivo was evaluated by Western blotting. The cellular localization of TREM-1 in the damaged region was observed via immunofluorescence staining. We also conducted Western blotting to examine expression of SYK, p-SYK and other downstream proteins. RESULTS: We found that inhibition of TREM-1 reduced brain edema, decreased mNSS and improved neurobehavioral outcomes after TBI. It was further determined that TREM-1 was expressed on microglia and modulated subtype transition of microglia. Inhibition of TREM-1 alleviated neuroinflammation, which was associated with SYK/p38MAPK signaling pathway. CONCLUSIONS: These findings suggest that TREM-1 can be a potential clinical therapeutic target for alleviating neuroinflammation after TBI.


Brain Injuries, Traumatic , Microglia , Neuroinflammatory Diseases , Syk Kinase , Triggering Receptor Expressed on Myeloid Cells-1 , p38 Mitogen-Activated Protein Kinases , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Animals , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Microglia/metabolism , Microglia/drug effects , Syk Kinase/metabolism , Syk Kinase/antagonists & inhibitors , Male , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , p38 Mitogen-Activated Protein Kinases/metabolism , Mice , Signal Transduction/drug effects , Brain Edema/metabolism , Brain Edema/drug therapy , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice, Inbred C57BL
5.
JAAPA ; 37(5): 22-27, 2024 May 01.
Article En | MEDLINE | ID: mdl-38595172

ABSTRACT: Acute liver failure, commonly caused by acetaminophen overdose, is associated with numerous systemic complications including cerebral edema, hypotension, acute kidney injury, and infection. Management is primarily supportive, with an emphasis on excellent neurocritical care. Although some antidotes and targeted treatments exist, the only definitive treatment remains orthotopic liver transplant.


Acetaminophen , Liver Failure, Acute , Liver Transplantation , Humans , Liver Failure, Acute/therapy , Liver Failure, Acute/chemically induced , Liver Failure, Acute/diagnosis , Acetaminophen/adverse effects , Drug Overdose/therapy , Brain Edema/etiology , Brain Edema/therapy , Analgesics, Non-Narcotic/adverse effects , Acute Kidney Injury/therapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/etiology , Acute Kidney Injury/diagnosis , Antidotes
6.
J Neuroinflammation ; 21(1): 106, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658922

BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS: C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS: Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS: Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.


Hematoma , Hemorrhagic Stroke , Mice, Inbred C57BL , Receptors, G-Protein-Coupled , Recovery of Function , Animals , Mice , Hematoma/drug therapy , Hematoma/pathology , Hematoma/metabolism , Male , Hemorrhagic Stroke/pathology , Hemorrhagic Stroke/drug therapy , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Recovery of Function/drug effects , Recovery of Function/physiology , Proto-Oncogene Proteins/metabolism , Brain Edema/etiology , Brain Edema/metabolism , Brain Edema/drug therapy , Microglia/drug effects , Microglia/metabolism
7.
Sci Rep ; 14(1): 9529, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664433

The aim of this study was to develop a dynamic nomogram combining clinical and imaging data to predict malignant brain edema (MBE) after endovascular thrombectomy (EVT) in patients with large vessel occlusion stroke (LVOS). We analyzed the data of LVOS patients receiving EVT at our center from October 2018 to February 2023, and divided a 7:3 ratio into the training cohort and internal validation cohort, and we also prospectively collected patients from another stroke center for external validation. MBE was defined as a midline shift or pineal gland shift > 5 mm, as determined by computed tomography (CT) scans obtained within 7 days after EVT. A nomogram was constructed using logistic regression analysis, and its receiver operating characteristic curve (ROC) and calibration were assessed in three cohorts. A total of 432 patients were enrolled in this study, with 247 in the training cohort, 100 in the internal validation cohort, and 85 in the external validation cohort. MBE occurred in 24% (59) in the training cohort, 16% (16) in the internal validation cohort and 14% (12) in the external validation cohort. After adjusting for various confounding factors, we constructed a nomogram including the clot burden score (CBS), baseline neutrophil count, core infarct volume on CTP before EVT, collateral index, and the number of retrieval attempts. The AUCs of the training cohorts were 0.891 (95% CI 0.840-0.942), the Hosmer-Lemeshow test showed good calibration of the nomogram (P = 0.879). And our nomogram performed well in both internal and external validation data. Our nomogram demonstrates promising potential in identifying patients at elevated risk of MBE following EVT for LVOS.


Brain Edema , Endovascular Procedures , Ischemic Stroke , Nomograms , Thrombectomy , Humans , Male , Female , Thrombectomy/adverse effects , Thrombectomy/methods , Aged , Brain Edema/etiology , Brain Edema/diagnostic imaging , Ischemic Stroke/surgery , Ischemic Stroke/etiology , Ischemic Stroke/diagnostic imaging , Middle Aged , Endovascular Procedures/adverse effects , Endovascular Procedures/methods , Risk Factors , ROC Curve , Aged, 80 and over , Tomography, X-Ray Computed
8.
Neurol Clin ; 42(2): 487-496, 2024 May.
Article En | MEDLINE | ID: mdl-38575261

The prevalence of brain tumors in patients with headache is very low; however, 48% to 71% of patients with brain tumors experience headache. The clinical presentation of headache in brain tumors varies according to age; intracranial pressure; tumor location, type, and progression; headache history; and treatment. Brain tumor-associated headaches can be caused by local and distant traction on pain-sensitive cranial structures, mass effect caused by the enlarging tumor and cerebral edema, infarction, hemorrhage, hydrocephalus, and tumor secretion. This article reviews the current findings related to epidemiologic details, clinical manifestations, mechanisms, diagnostic approaches, and management of headache in association with brain tumors.


Brain Edema , Brain Neoplasms , Hydrocephalus , Humans , Brain Neoplasms/complications , Brain Neoplasms/diagnosis , Headache/diagnosis , Headache/etiology , Headache/therapy , Hydrocephalus/complications
9.
Acta Neurochir (Wien) ; 166(1): 170, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38581569

BACKGROUND: Patients with intracranial meningiomas frequently suffer from tumor-related seizures prior to resection, impacting patients' quality of life. We aimed to elaborate on incidence and predictors for seizures in a patient cohort with meningiomas WHO grade 2 and 3. METHODS: We retrospectively searched for patients with meningioma WHO grade 2 and 3 according to the 2021 WHO classification undergoing tumor resection. Clinical, histopathological and imaging findings were collected and correlated with preoperative seizure development. Tumor and edema volumes were quantified. RESULTS: Ninety-five patients with a mean age of 59.5 ± 16.0 years were included. Most tumors (86/95, 90.5%) were classified as atypical meningioma WHO grade 2. Nine of 95 tumors (9.5%) corresponded to anaplastic meningiomas WHO grade 3, including six patients harboring TERT promoter mutations. Meningiomas were most frequently located at the convexity in 38/95 patients (40.0%). Twenty-eight of 95 patients (29.5%) experienced preoperative seizures. Peritumoral edema was detected in 62/95 patients (65.3%) with a median volume of 9 cm3 (IR: 0-54 cm3). Presence of peritumoral edema but not age, tumor localization, TERT promoter mutation, brain invasion or WHO grading was associated with incidence of preoperative seizures, as confirmed in multivariate analysis (OR: 6.61, 95% CI: 1.18, 58.12, p = *0.049). Postoperative freedom of seizures was achieved in 91/95 patients (95.8%). CONCLUSIONS: Preoperative seizures were frequently encountered in about every third patient with meningioma WHO grade 2 or 3. Patients presenting with peritumoral edema on preoperative imaging are at particular risk for developing tumor-related seizures. Tumor resection was highly effective in achieving seizure freedom.


Brain Edema , Meningeal Neoplasms , Meningioma , Humans , Adult , Middle Aged , Aged , Meningioma/complications , Meningioma/surgery , Meningioma/pathology , Retrospective Studies , Quality of Life , Seizures/etiology , Seizures/epidemiology , Risk Factors , Edema , Meningeal Neoplasms/complications , Meningeal Neoplasms/surgery , Meningeal Neoplasms/pathology , World Health Organization , Brain Edema/etiology , Brain Edema/surgery
10.
Acta Med Okayama ; 78(2): 115-122, 2024 Apr.
Article En | MEDLINE | ID: mdl-38688829

Brain edema causes abnormal fluid retention and can be fatal in severe cases. Although it develops in various diseases, most treatments for brain edema are classical. We analyzed the impacts of age and gender on the characteristics of a water intoxication model that induces pure brain edema in mice and examined the model's usefulness for research regarding new treatments for brain edema. C57BL/6J mice received an intraperitoneal administration of 10% body weight distilled water, and we calculated the brain water content by measuring the brain-tissue weight immediately after dissection and after drying. We analyzed 8-OHdG and caspase-3 values to investigate the brain damage. We also applied this model in aquaporin 4 knockout (AQP4-) mice and compared these mice with wild-type mice. The changes in water content differed by age and gender, and the 8-OHdG and caspase-3 values differed by age. Suppression of brain edema by AQP4- was also confirmed. These results clarified the differences in the onset of brain edema by age and gender, highlighting the importance of considering the age and gender of model animals. Similar studies using genetically modified mice are also possible. Our findings indicate that this water intoxication model is effective for explorations of new brain edema treatments.


Aquaporin 4 , Brain Edema , Disease Models, Animal , Mice, Inbred C57BL , Water Intoxication , Animals , Brain Edema/pathology , Water Intoxication/complications , Male , Mice , Female , Aquaporin 4/genetics , Age Factors , Sex Factors , Mice, Knockout , Caspase 3/metabolism , Brain/pathology , Brain/metabolism
12.
CNS Neurosci Ther ; 30(3): e14669, 2024 03.
Article En | MEDLINE | ID: mdl-38459666

BACKGROUND: Diffuse brain injury (DBI) models are characterized by intense global brain inflammation and edema, which characterize the most severe form of TBI. In a previous experiment, we found that fingolimod promoted recovery after controlled cortical impact injury (CCI) by modulating inflammation around brain lesions. However, it remains unclear whether fingolimod can also attenuate DBI because of its different injury mechanisms. Furthermore, whether fingolimod has additional underlying effects on repairing DBI is unknown. METHODS: The impact acceleration model of DBI was established in adult Sprague-Dawley rats. Fingolimod (0.5 mg/kg) was administered 0.5, 24, and 48 h after injury for 3 consecutive days. Immunohistochemistry, immunofluorescence analysis, cytokine array, and western blotting were used to evaluate inflammatory cells, inflammatory factors, AQP4 polarization, apoptosis in brain cells, and the accumulation of APP after DBI in rats. To evaluate the function of the glymphatic system (GS), a fluorescent tracer was injected into the cistern. The neural function of rats with DBI was evaluated using various tests, including the modified neurological severity score (mNSS), horizontal ladder-crossing test, beam walking test, and tape sensing and removal test. Brain water content was also measured. RESULTS: Fingolimod administration for 3 consecutive days could reduce the levels of inflammatory cytokines, neutrophil recruitment, microglia, and astrocyte activation in the brain following DBI. Moreover, fingolimod reduced apoptotic protein expression, brain cell apoptosis, brain edema, and APP accumulation. Additionally, fingolimod inhibited the loss of AQP4 polarization, improved lymphatic system function, and reduced damage to nervous system function. Notably, inhibiting the GS weakened the therapeutic effect of fingolimod on the neurological function of rats with DBI and increased the accumulation of APP in the brain. CONCLUSIONS: In brief, these findings suggest that fingolimod alleviates whole-brain inflammation and GS system damage after DBI and that inhibiting the GS could weaken the positive effect of fingolimod on nerve function in rats with DBI. Thus, inhibiting inflammation and regulating the GS may be critical for the therapeutic effect of fingolimod on DBI.


Brain Edema , Brain Injuries, Diffuse , Brain Injuries, Traumatic , Encephalitis , Glymphatic System , Rats , Animals , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Rats, Sprague-Dawley , Glymphatic System/metabolism , Brain Edema/etiology , Encephalitis/complications , Cytokines/metabolism , Inflammation/complications , Disease Models, Animal , Brain Injuries, Traumatic/pathology
13.
CNS Neurosci Ther ; 30(3): e14673, 2024 03.
Article En | MEDLINE | ID: mdl-38468459

AIM: We aim to identify the specific CD4+ T-cell subtype influenced by brain-to-CLN signaling and explore their role during the acute phase of traumatic brain injury (TBI). METHOD: Cervical lymphadenectomy or cervical afferent lymphatic ligation was performed before TBI. Cytokine array and western blot were used to detect cytokines, while the motor function was assessed using mNss and rotarod test. CD4+ T-cell subtypes in blood, brain, and CLNs were analyzed with Cytometry by time-of-flight analysis (CyTOF) or fluorescence-activated cell sorting (FACS). Brain edema and volume changes were measured by 9.4T MRI. Neuronal apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. RESULTS: Cervical lymphadenectomy and ligation of cervical lymphatic vessels resulted in a decreased infiltration of CD4+ T cells, specifically CD11b-positive CD4+ T cells, within the affected region. The population of CD4+ CD11b+ T cells increased in ligated CLNs, accompanied by a decrease in the average fluorescence intensity of sphingosine-1-phosphate receptor-1 (S1PR1) on these cells. Administration of CD4+ CD11b+ T cells sorted from CLNs into the lateral ventricle reversed the attenuated neurologic deficits, brain edema, and lesion volume following cervical lymphadenectomy. CONCLUSION: The infiltration of CD4+ CD11b+ T cells exacerbates secondary brain damage in TBI, and this process is modulated by brain-to-CLN signaling.


Brain Edema , Brain Injuries, Traumatic , Lymphatic Vessels , Humans , Animals , Brain Edema/pathology , T-Lymphocytes , Brain Injuries, Traumatic/pathology , Brain/pathology , Apoptosis , Cytokines , Lymphatic Vessels/pathology , CD4-Positive T-Lymphocytes , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Disease Models, Animal
14.
Resuscitation ; 198: 110181, 2024 May.
Article En | MEDLINE | ID: mdl-38492716

BACKGROUND: Few data characterize the role of brain computed tomography (CT) after resuscitation from in-hospital cardiac arrest (IHCA). We hypothesized that identifying a neurological etiology of arrest or cerebral edema on brain CT are less common after IHCA than after resuscitation from out-of-hospital cardiac arrest (OHCA). METHODS: We included all patients comatose after resuscitation from IHCA or OHCA in this retrospective cohort analysis. We abstracted patient and arrest clinical characteristics, as well as pH and lactate, to estimate systemic illness severity. Brain CT characteristics included quantitative measurement of the grey-to-white ratio (GWR) at the level of the basal ganglia and qualitative assessment of sulcal and cisternal effacement. We compared GWR distribution by stratum (no edema ≥1.30, mild-to-moderate <1.30 and >1.20, severe ≤1.20) and newly identified neurological arrest etiology between IHCA and OHCA groups. RESULTS: We included 2,306 subjects, of whom 420 (18.2%) suffered IHCA. Fewer IHCA subjects underwent post-arrest brain CT versus OHCA subjects (149 (35.5%) vs 1,555 (82.4%), p < 0.001). Cerebral edema for IHCA versus OHCA was more often absent (60.1% vs. 47.5%) or mild-to-moderate (34.3% vs. 27.9%) and less often severe (5.6% vs. 24.6%). A neurological etiology of arrest was identified on brain CT in 0.5% of IHCA versus 3.2% of OHCA. CONCLUSIONS: Although severe edema was less frequent in IHCA relative to OHCA, mild-to-moderate or severe edema occurred in one in three patients after IHCA. Unsuspected neurological etiologies of arrest were rarely discovered by CT scan in IHCA patients.


Brain Edema , Cardiopulmonary Resuscitation , Heart Arrest , Out-of-Hospital Cardiac Arrest , Tomography, X-Ray Computed , Humans , Male , Female , Retrospective Studies , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/statistics & numerical data , Middle Aged , Cardiopulmonary Resuscitation/methods , Cardiopulmonary Resuscitation/adverse effects , Aged , Brain Edema/etiology , Brain Edema/diagnostic imaging , Out-of-Hospital Cardiac Arrest/therapy , Out-of-Hospital Cardiac Arrest/etiology , Out-of-Hospital Cardiac Arrest/diagnostic imaging , Heart Arrest/therapy , Heart Arrest/etiology , Brain/diagnostic imaging , Coma/etiology
15.
Neuropharmacology ; 251: 109896, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38490299

Secondary brain injury after intracerebral hemorrhage (ICH) is the main cause of poor prognosis in ICH patients, but the underlying mechanisms remain less known. The involvement of Piezo1 in brain injury after ICH was studied in a mouse model of ICH. ICH was established by injecting autologous arterial blood into the basal ganglia in mice. After vehicle, Piezo1 blocker, GsMTx4, Piezo1 activator, Yoda-1, or together with mannitol (tail vein injection) was injected into the left lateral ventricle of mouse brain, Piezo1 level and the roles of Piezo1 in neuronal injury, brain edema, and neurological dysfunctions after ICH were determined by the various indicated methods. Piezo1 protein level in neurons was significantly upregulated 24 h after ICH in vivo (human and mice). Piezo1 protein level was also dramatically upregulated in HT22 cells (a murine neuron cell line) cultured in vitro 24 h after hemin treatment as an in vitro ICH model. GsMTx4 treatment or together with mannitol significantly downregulated Piezo1 and AQP4 levels, markedly increased Bcl2 level, maintained more neurons alive, considerably restored brain blood flow, remarkably relieved brain edema, substantially decreased serum IL-6 level, and almost fully reversed the neurological dysfunctions at ICH 24 h group mice. In contrast, Yoda-1 treatment achieved the opposite effects. In conclusion, Piezo1 plays a crucial role in the pathogenesis of brain injury after ICH and may be a target for clinical treatment of ICH.


Brain Edema , Brain Injuries , Pyrazines , Thiadiazoles , Humans , Mice , Animals , Cerebral Hemorrhage/complications , Brain Injuries/drug therapy , Ion Channels , Brain Edema/metabolism , Mannitol/therapeutic use
16.
Neuroreport ; 35(6): 352-360, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38526937

An imbalance of immune/inflammatory reactions aggravates secondary brain injury after traumatic brain injury (TBI) and can deteriorate clinical prognosis. So far, not enough therapeutic avenues have been found to prevent such an imbalance in the clinical setting. Progesterone has been shown to regulate immune/inflammatory reactions in many diseases and conveys a potential protective role in TBI. This study was designed to investigate the neuroprotective effects of progesterone associated with immune/inflammatory modulation in experimental TBI. A TBI model in adult male C57BL/6J mice was created using a controlled contusion instrument. After injury, the mice received consecutive progesterone therapy (8 mg/kg per day, i.p.) until euthanized. Neurological deficits were assessed via Morris water maze test. Brain edema was measured via the dry-wet weight method. Immunohistochemical staining and flow cytometry were used to examine the numbers of immune/inflammatory cells, including IBA-1 + microglia, myeloperoxidase + neutrophils, and regulatory T cells (Tregs). ELISA was used to detect the concentrations of IL-1ß, TNF-α, IL-10, and TGF-ß. Our data showed that progesterone therapy significantly improved neurological deficits and brain edema in experimental TBI, remarkably increased regulatory T cell numbers in the spleen, and dramatically reduced the activation and infiltration of inflammatory cells (microglia and neutrophils) in injured brain tissue. In addition, progesterone therapy decreased the expression of the pro-inflammatory cytokines IL-1ß and TNF-α but increased the expression of the anti-inflammatory cytokine IL-10 after TBI. These findings suggest that progesterone administration could be used to regulate immune/inflammatory reactions and improve outcomes in TBI.


Brain Edema , Brain Injuries, Traumatic , Mice , Male , Animals , Interleukin-10 , Progesterone/pharmacology , Neuroprotection , Tumor Necrosis Factor-alpha/metabolism , Brain Edema/drug therapy , Brain Edema/etiology , Brain Edema/prevention & control , Mice, Inbred C57BL , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1beta/metabolism , Disease Models, Animal , Microglia/metabolism
17.
BMJ Case Rep ; 17(3)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38514165

Hepatic veno-occlusive disease (VOD)/sinusoidal obstructive syndrome (SOS) is a severe complication that can occur following haematopoietic stem cell transplant (HSCT) with high-intensity conditioning chemotherapy regimens. Severe VOD/SOS, often characterised by multiorgan failure, is associated with a high mortality rate. This case report details the complex clinical course of a male patient in his mid-20s, recently diagnosed with B cell acute lymphoblastic leukaemia, who underwent allogeneic HSCT. Based on the 2023 European Society for Blood and Marrow Transplantation (EBMT) criteria, the patient developed very severe VOD/SOS, prompting immediate treatment with defibrotide. Unexpectedly, he developed profound hyperammonaemia exceeding 900 µmol/L, leading to encephalopathy and cerebral oedema. Despite aggressive interventions including defibrotide, lactulose, rifampin and haemodialysis, the patient passed away due to cerebral oedema and pulseless electrical activity arrest. We theorise the hyperammonaemia is disproportionate to his hepatic dysfunction and is possibly secondary to an acquired defect of the urea synthesis consistent with idiopathic hyperammonaemia, a rare complication in patients receiving intense conditioning chemotherapy.


Brain Edema , Hematopoietic Stem Cell Transplantation , Hepatic Veno-Occlusive Disease , Hyperammonemia , Polydeoxyribonucleotides , Humans , Male , Lactulose/therapeutic use , Rifampin/therapeutic use , Hepatic Veno-Occlusive Disease/drug therapy , Hepatic Veno-Occlusive Disease/etiology , Hepatic Veno-Occlusive Disease/diagnosis , Brain Edema/etiology , Hyperammonemia/drug therapy , Hyperammonemia/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Renal Dialysis/adverse effects
18.
Medicine (Baltimore) ; 103(12): e37585, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38518026

Poor functional outcome is associated with perihematomal edema (PHE) expansion after intracerebral hemorrhage (ICH). The inflammatory response is crucial for the onset and progression of PHE. This study aimed to determine the connection between admission neutrophil-lymphocyte ratio (NLR) and early PHE development. We retrospectively analyzed patients with ICH admitted to the Chaohu Affiliated Hospital of Anhui Medical University from January 2021 to December 2022. The primary outcome measure was absolute PHE, defined as the volume of the follow-up PHE minus admission PHE. A semiautomated measurement tool (3D Slicer) was used to calculate the volumes of cerebral hematoma and cerebral edema. Spearman's correlation analysis determined the relationship between NLR and absolute PHE. The multiple linear regression model was constructed to analyze the predictive relation of admission NLR on early PHE expansion. A total of 117 patients were included. The median hematoma and PHE volumes on admission were 9.38 mL (interquartile range [IQR], 4.53-19.54) and 3.54 mL (IQR, 1.33-7.1), respectively. The median absolute PHE was 2.26 mL (IQR, 1.25-4.23), and the median NLR was 3.10 (IQR, 2.26-3.86). Spearman's correlation test showed a positive correlation between admission NLR and absolute PHE (r = .548, P < .001). Multiple linear regression analyses suggested that for every 1-unit increase in admission NLR (B = .176, SE = .043, Beta = .275, P < .001), there was a 0.176 mL increase in absolute PHE. Admission neutrophil-to-lymphocyte ratio (NLR) significantly and positively predicted early perihematomal edema (PHE) expansion.


Brain Edema , Neutrophils , Humans , Retrospective Studies , Cerebral Hemorrhage/complications , Lymphocytes , Edema , Brain Edema/complications , Hematoma/complications
19.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38542509

Traumatic brain injuries represent a leading cause of death and disability in the paediatric and adult populations. Moderate-to-severe injuries are associated with blood-brain barrier dysfunction, the development of cerebral oedema, and neuroinflammation. Antagonists of the tachykinin NK1 receptor have been proposed as potential agents for the post-injury treatment of TBI. We report on the identification of EUC-001 as a potential clinical candidate for development as a novel TBI therapy. EUC-001 is a selective NK1 antagonist with a high affinity for the human NK1 receptor (Ki 5.75 × 10-10 M). It has sufficient aqueous solubility to enable intravenous administration, whilst still retaining good CNS penetration as evidenced by its ability to inhibit the gerbil foot-tapping response. Using an animal model of TBI, the post-injury administration of EUC-001 was shown to restore BBB function in a dose-dependent manner. EUC-001 was also able to ameliorate cerebral oedema. These effects were associated with a significant reduction in post-TBI mortality. In addition, EUC-001 was able to significantly reduce functional deficits, both motor and cognitive, that normally follow a severe injury. EUC-001 is proposed as an ideal candidate for clinical development for TBI.


Brain Edema , Brain Injuries, Traumatic , Animals , Humans , Child , Receptors, Neurokinin-1 , Substance P , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Brain Injuries, Traumatic/drug therapy , Infusions, Intravenous
20.
Comput Biol Med ; 173: 108342, 2024 May.
Article En | MEDLINE | ID: mdl-38522249

BACKGROUND AND OBJECTIVE: Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide. Spontaneous intracerebral hemorrhage (SICH) typically presents acutely, prompt and expedited radiological examination is crucial for diagnosis, localization, and quantification of the hemorrhage. Early detection and accurate segmentation of perihematomal edema (PHE) play a critical role in guiding appropriate clinical intervention and enhancing patient prognosis. However, the progress and assessment of computer-aided diagnostic methods for PHE segmentation and detection face challenges due to the scarcity of publicly accessible brain CT image datasets. METHODS: This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage. The dataset comprises 120 brain CT scans and 7,022 CT images, along with corresponding medical information of the patients. To demonstrate its effectiveness, classical algorithms for semantic segmentation, object detection, and radiomic feature extraction are evaluated. The experimental results confirm the suitability of PHE-SICH-CT-IDS for assessing the performance of segmentation, detection and radiomic feature extraction methods. RESULTS: This study conducts numerous experiments using classical machine learning and deep learning methods, demonstrating the differences in various segmentation and detection methods on the PHE-SICH-CT-IDS. The highest precision achieved in semantic segmentation is 76.31%, while object detection attains a maximum precision of 97.62%. The experimental results on radiomic feature extraction and analysis prove the suitability of PHE-SICH-CT-IDS for evaluating image features and highlight the predictive value of these features for the prognosis of SICH patients. CONCLUSION: To the best of our knowledge, this is the first publicly available dataset for PHE in SICH, comprising various data formats suitable for applications across diverse medical scenarios. We believe that PHE-SICH-CT-IDS will allure researchers to explore novel algorithms, providing valuable support for clinicians and patients in the clinical setting. PHE-SICH-CT-IDS is freely published for non-commercial purpose at https://figshare.com/articles/dataset/PHE-SICH-CT-IDS/23957937.


Brain Edema , Humans , Brain Edema/diagnostic imaging , Benchmarking , Radiomics , Semantics , Edema , Cerebral Hemorrhage/diagnostic imaging , Tomography, X-Ray Computed
...